Acute and chronic mesenteric ischemia

Incidence, clinical presentation and treatment options

Marcus Thieme, MD
REGIOMED Vascular Center and Jena University Hospital
Disclosure

Speaker`s name: Marcus Thieme, MD

I have the following potential conflicts of interest to report:

☐ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☒ I do not have any potential conflict of interest
Acute mesenteric ischemia - History

• “The diagnosis is impossible, the prognosis hopeless, and the treatment useless.”
 (A.J. Cokkinis 1926)

• “With good luck, one third of the cases can be treated with 50% survival, overall mortality more than 80%.”
 (O. Järvinen 1994)

→ multi-slice contrast-enhanced CT and endovascular therapy

• “In-hospital mortality of American patients declines to 26% in 2010.”
 (M. Fokkema 2014)
Acute mesenteric ischemia - Incidence

- Annual incidence in Sweden (autopsie-rate 87%) 12/100.000
 - 2/3 thromboembolic occlusive mesenteric ischemia
 - 1/6 non-occlusive mesenteric ischemia (NOMI), 1/6 mesenteric venous thrombosis
 - Acute occlusion of the superior mesenteric artery (SMA) 8.6/100.000
 - Embolism 70%, thrombotic 30%
 - Since 1990 the embolism : thrombotic rate has changed to 1:1 or 0.6:1
 - The incidence of AMI was 1.5 times higher than the incidence of ruptured abdominal aortic aneurysm

- AMI is found as cause of symptoms in 10% of acute abdomen in patients >70 y

Acute mesenteric ischemia - Incidence exponentially increases with age

Prevalence of mesenteric and coeliac artery stenosis

- Hemodynamically significant SMA stenosis ~ 2% in elderly patients, in 50-80% with concomitant disease of Coeliac artery (CA)

- Isolated CA stenosis is much more common
 - Up to 15% in elderly asymptomatic patients,
 - 27-40% in PAD and patients with abdominal aortic aneurysm
 - etiology is more often external compression than arteriosclerosis
 - Isolated CA is usually asymptomatic (85%)
 - Is not a significant risk factor for AMI

- **Concomitant obstruction** of SMA, CA and IMA is a major risk factor for symptomatic mesenteric ischemia, **up to 86% symptomatic patients**
Acute mesenteric ischemia - Etiological categorization

- Arterial mesenteric ischemia
- Occlusive mesenteric ischemia
- Embolism
- Non-occlusive mesenteric ischemia (NOMI)
- Venous mesenteric ischemia
- Mesenteric arterial occlusive disease

AMi – Clinical presentation

- Acute occlusion of MA → Vascular spasm in the area of ischemic bowel → Hyperperistalisis → paroxysmal midabdominal or epigastric pain
- Diarrhea, blood per rectum, nausea, vomiting
- Pain-free intervall after 3-6h
- Peritonitis, ileus, sepsis and multiple organ failure as final stage
- CT as gold standard
 - Arterial and venous phases should be performed!
 - Ultrasound is not recommended in AMi

In stable patients (with/without transmural bowel necrosis) intestinal revascularisation should be performed prior to resection

1. Endovascular revascularization (EVT)
2a) If EVT successful: re-evaluation of the abdomen
 - Laparoscopy on demand if symptoms don’t resolve quickly
 - Laparotomy in patients with advanced peritoneal signs
 - Resection of unsalvageable part of the intestine
 - If symptoms resolve → close surveillance
2b) If EVT unsuccessful: laparotomy
 - retrograde hybrid stenting, surgical revascularisation (embolectomy, Bypass from the external or common iliac artery to SMA)
3) Second look on demand

AMI – Endovascular treatment options

- Thrombus aspiration, mechanical thrombectomy
- Balloon dilatation, stent implantation
- Additional local thrombolysis
- Rotarex thrombectomy (6F)
 - Single-center experience with 20 patients (6 years)
 - Successful revascularisation via left brachial artery in 100%
- Additional PTA (30%), stenting (25%), thrombolysis (20%), aspiration (10%)
- 70% followed by open surgery, death rate 40%

AMNI and CMI - Single-center results

Sample Size n = 37
Mean age = 75.39 years (SD 8.75)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>14 (37.8%)</td>
</tr>
<tr>
<td>Female</td>
<td>23 (62.2%)</td>
</tr>
<tr>
<td>Acute</td>
<td>14 (37.8%)</td>
</tr>
<tr>
<td>Chronic</td>
<td>23 (62.2%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PTA + Stent</td>
<td>26 (70.3%)</td>
</tr>
<tr>
<td>Thrombolysis + Stent</td>
<td>3 (8.1%)</td>
</tr>
<tr>
<td>Lysis + Thrombectomy</td>
<td>3 (8.1%)</td>
</tr>
<tr>
<td>Other</td>
<td>6 (16.2%)</td>
</tr>
</tbody>
</table>
AMI and CMI – Single-center treatment results

Outcome of all patients (n = 37)
- Restitution: 23 (62%)
- Low deficit: 7 (19%)
- Strong deficit: 2 (5%)
- Death: 5 (14%)

Outcome of acute cases (n = 14)
- Restitution: 6 (43%)
- Low deficit: 2 (14%)
- Strong deficit: 1 (7%)
- Death: 5 (36%)

Operation rate in AMI
- Bowel resection: 4 (29%)
- Laparoscopy/Laparotomy: 4 (29%)
AMI and CMI - Treatment results

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>n</th>
<th>Surgical treatment</th>
<th>Endovascular treatment</th>
<th>Bowel resection open vs endo</th>
<th>Mortality at 30days Open vs endo</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schermerhorn et al (Nationwide Inpatient Sample)</td>
<td>2009</td>
<td>3380</td>
<td></td>
<td>1857</td>
<td>48%</td>
<td>28%</td>
<td>49% 30% AMI cohort (6 years US, ICD-based)</td>
</tr>
<tr>
<td>Block et al (Swedish Vascular registry)</td>
<td>2010</td>
<td>121</td>
<td></td>
<td>42</td>
<td>63%</td>
<td>19%</td>
<td>42% 24% AMI only (8 years nationwide Sweden)</td>
</tr>
<tr>
<td>Arthur et al (Cleveland Clinic)</td>
<td>2011</td>
<td>14</td>
<td></td>
<td>56</td>
<td>94%</td>
<td>84%</td>
<td>36% 50% AMI only (9 years median 60h to EVT)</td>
</tr>
<tr>
<td>Ryer et al (Mayo Clinic)</td>
<td>2012</td>
<td>82</td>
<td></td>
<td>11 (incl. hybrid)</td>
<td>63%</td>
<td>17%</td>
<td>AMI only (20 years)</td>
</tr>
<tr>
<td>Beaulieu et al (Nationwide Inpatient sample)</td>
<td>2014</td>
<td>514</td>
<td></td>
<td>165</td>
<td>33.4%</td>
<td>14.4%</td>
<td>39.3% 24.9% AMI only (5 years US, ICD-based)</td>
</tr>
<tr>
<td>Arya et al (Michigan)</td>
<td>2016</td>
<td>77</td>
<td></td>
<td>38</td>
<td>43.5%</td>
<td>36.4%</td>
<td>34.8% 45.4% AMI and CMI (10 years)</td>
</tr>
</tbody>
</table>
Case Example 1

• 62-year-old female patient
• Acute severe abdominal pain
• CT-Scan: acute SMA-occlusion
Case Example 1

After PTA
Case Example 1

After local thrombolysis (rt-PA) for 24 hours
Case Example 2

- 59-year-old female patient
- Acute severe on chronic abdominal pain
- CT-Scan:
 Subacute perforation/bleeding of SMA-aneurysm and SMA-dissection
Case Example 2
Case Example 3

- 78-year-old female patient
- Acute abdominal pain and diarrhea
- CT-Scan:
 Subtotal occlusion of coeliac trunk, thrombotic material in common liver and splenic artery, splenic infarction
Case Example 3
Case Example 3

after 24h thrombolysis

Mesenteric Ischemia
Summary

- CT scan without delay is required for suspected AMI and unexplained abdominal pain
- EVT is safe and evidence-based in treatment of AMI and CMI
- AMI still shows a high mortality of up to 40%, mostly due to delayed diagnosis
Thank you for your attention!

Dr. med. Marcus Thieme

REGIOMED Hospital Sonneberg
Head of Dept. Internal Medicine and REGIOMED Vascular Center
96515 Sonneberg, Germany
Phone 03657 821 2012
E-Mail marcus.thieme@regiomed-kliniken.de

Jena University Hospital
Clinic of Internal Medicine I
Head of Dept. Angiology
07743 Jena
Phone 03641 932 4104

23.01.2019 Mesenteric Ischemia
Acute and chronic mesenteric ischemia

Incidence, clinical presentation and treatment options

Marcus Thieme, MD
REGIOMED Vascular Center and Jena University Hospital