Will Mesh Covered Stents Help Reduce The Risk Of Stroke?

William A. Gray MD
System Chief of Cardiovascular Services, Main Line Health
President, Lankenau Heart Institute
Wynnewood, PA
USA
What are the possible causes of stroke in CAS?

• Operator error
 - Technique (balloon sizing, wire misadventure, EPD error, etc.)

• Patient factors
 - Vulnerable plaque (lesion, carotid, aorta)
 - Vascular anatomy or characteristics (calcium, thrombus, etc.)
 - Genetics related to thienopyridine metabolism

• Inadequate technology
 - EPD, stent, procedural pharmacology
Open and closed cell design elements

Pre-deployment shape

Post-deployment shape

Closed cell

Open cell

Crown

Cell
Stent design: open vs. closed cell
Closed cell stent stiffness can lead to kinking
Open cell stent can conform to vessel, but may fish-scale
Differences in cell size by stent
Also need to consider Minimal Circular Unsupported Area (MCUSA)
Pore (MCUSA) sizes

No significant difference between OC and CC stents

N.B. filter pore size ~1/10\(^{\text{th}}\) the stent pore size

<table>
<thead>
<tr>
<th>Stent</th>
<th>Pore Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wallstent</td>
<td>0.92</td>
</tr>
<tr>
<td>Xact</td>
<td>0.96</td>
</tr>
<tr>
<td>Protégé</td>
<td>1.08</td>
</tr>
<tr>
<td>Precise</td>
<td>1.12</td>
</tr>
<tr>
<td>Acculink</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Xact, PROTÉGÉ RX and Acculink = 8-6mm tapered stents (distal portion)

Precise and Wallstent = 8mm straight stent
Clinical event rates by free cell area

<table>
<thead>
<tr>
<th>Free cell area</th>
<th>Total population</th>
<th>Symptomatic population</th>
<th>Asymptomatic population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients</td>
<td>All events</td>
<td>Post-procedural events</td>
</tr>
<tr>
<td><2.5 mm²</td>
<td>2107</td>
<td>48</td>
<td>26</td>
</tr>
<tr>
<td>2.5–5 mm²</td>
<td>135</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5–7.5 mm²</td>
<td>327</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>>7.5 mm²</td>
<td>610</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>3179</td>
<td>90</td>
<td>61</td>
</tr>
</tbody>
</table>

European Registry: no effect of stent type on outcomes

Symptomatic Patients (n=674)

- TIA, stroke&death day 0 to 30: 0% vs. 2%, p=0.43
- Stroke&death day 0 to 30: 4% vs. 6%, p=0.84
- TIA, stroke&death day 0: 6.5% vs. 3.9%, p=0.16
- Stroke&death day 0: 3.1% vs. 1.8%, p=0.32
- TIA, stroke&death day 1 to 30: 0.7% vs. 1.6%, p=0.48
- Stroke&death day 1 to 30: 0.3% vs. 1.3%, p=0.24

Current non-randomized data-sets do not support the superiority of open or closed cell design stents. (Very large) Randomized trials will be needed to clarify this issue.
EXACT (CC) and CAPTURE 2 (OC)
No differences in prospective, adjudicated study

EXACT (N=2145)*
CAPTURE 2 (N=4175)
Combined (N=6320)

EXACT (N=213)
CAPTURE 2 (N=548)
Combined (N=761)

EXACT (N=1931)
CAPTURE 2 (N=3627)
Combined (N=5558)

Lankenau Heart Institute
Main Line Health
Stroke timing paradox: Not all strokes appear on the day of the procedure

Post-procedural **PLAQUE PROLAPSE** through conventional stent struts

Suzuki M et al.
ESC 2014
Presentation
www.escardio.org

81 y.o. Female, Symptomatic

1/3 stents = **Precise**
2/3 stents = **Carotid Wallstent**

Images: Dr M. Suzuki
ESC 2014
www.escardio.org
Eur Heart J. 2014;35(Abst Suppl):178
MRI DWI white matter changes post CAS are greater than CEA: numerically but not by volume
<table>
<thead>
<tr>
<th>Name</th>
<th>RoadSaver aka Casper</th>
<th>Gore® Carotid Stent</th>
<th>CGuard™ Embolic Prevention Stent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stent frame</td>
<td>closed-cell Nitinol</td>
<td>open-cell Nitinol</td>
<td>open-cell Nitinol</td>
</tr>
<tr>
<td>Mesh position in relation to frame</td>
<td>inside</td>
<td>outside</td>
<td>outside</td>
</tr>
<tr>
<td>Mesh material</td>
<td>Nitinol</td>
<td>PTFE</td>
<td>PET</td>
</tr>
<tr>
<td>Mesh structure</td>
<td>braided</td>
<td>inter-woven</td>
<td>single-fiber knitted</td>
</tr>
<tr>
<td>Pore size</td>
<td>375 µm</td>
<td>500 µm</td>
<td>150 - 180 µm</td>
</tr>
</tbody>
</table>
Ideal Pore Size

*165μ 375 500 1050
Closed cell stent

1900
Open cell stent

* Average in lesion at expanded state
Evaluation of PET Mesh Covered Stent in Patients with Carotid Artery Disease

The CARENET-Trial
(CARotid Embolic protection using microNET)

Joachim Schofer (PI)
Piotr Musialek (Co-PI)
On behalf of the CARENET Investigators
Filter-protected CAS procedures

CARENET vs PROFI: DW-MRI analysis

DW-MRI analysis @ 48 hours

- **CGuard (n=27):** 34.6%
- **Conventional Carotid stent (n=31):** 87.1%

p < 0.005

References:
- J. Schofer, P. Musialek et al. *JACC Intv* 2015;8:1229-34
- Bijuklic et al. (manuscript in preparation)
Filter-protected CAS procedures

CARENET vs PROFI: DW-MRI analysis

DW-MRI analysis @ 48 hours

VOLUME

new ipsilateral lesions (mL)

CGuard

0.04

n=27

Conventional Carotid stent (hybrid)

0.59

n=31

p < 0.005

see patient fluxogram

ijuklic et al. JACC, 2012;59

J. Schofer, P. Musialek et al. JACC Intv. 2015;8:1229-34

Bijuklic et al. (manuscript in preparation)
TERUMO: Roadsaver

- Closed cell structure with flexible Nitinol weave
 - Dual layer micromesh design
- Retrievable and repositionable
CASPER/Roadsaver vs. Closed Cell CAS: OCT
Regulatory status of CASPER

- FDA IDE for US investigation is underway, recruiting
WL Gore SCAFFOLD stent
SCAFFOLD: trial description

<table>
<thead>
<tr>
<th>Device</th>
<th>Gore SCAFFOLD mesh-covered stent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Evaluate the performance of the SCAFFOLD stent in treating bifurcation carotid artery stenosis at high risk for CEA</td>
</tr>
<tr>
<td>Study Design</td>
<td>Prospective, multicenter, single-arm, open label</td>
</tr>
<tr>
<td>Subjects</td>
<td>312 patients with bifurcation carotid artery stenosis</td>
</tr>
</tbody>
</table>
| **Principle Investigators** | William A. Gray MD (IC) Philadelphia PA
Peter Schneider MD (VS) Honolulu HI |
| **Investigational Centers** | 30 US sites |
| **Evaluation** | Baseline, Procedure, 1 month, 1 year, 2 years, 3 years |
| **Primary Endpoint** | 30-day death, all stroke, myocardial infarction plus ipsilateral stroke to 1 year |
SCAFFOLD 1 year Primary Endpoints

<table>
<thead>
<tr>
<th>30 Day Endpoint (N)</th>
<th>ITT</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>15 (4.8%)</td>
<td>8 (3.0%)</td>
</tr>
<tr>
<td>Death</td>
<td>2 (0.6%)</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>4 (1.3%)</td>
<td>4 (1.5%)</td>
</tr>
<tr>
<td>Q-wave MI</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Stroke</td>
<td>9 (2.9%)</td>
<td>3 (1.1%)</td>
</tr>
<tr>
<td>Major stroke</td>
<td>5 (1.6%)</td>
<td>3 (1.1%)</td>
</tr>
<tr>
<td>Ipsilateral</td>
<td>4 (1.3%)</td>
<td>2 (0.8%)</td>
</tr>
<tr>
<td>Non-ipsilateral</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Hemorrhagic (ipsi)</td>
<td>1 (0.3%)</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Minor stroke</td>
<td>4 (1.3%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Ipsilateral</td>
<td>2 (0.6%)</td>
<td></td>
</tr>
<tr>
<td>Non-ipsilateral</td>
<td>2 (0.6%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Year Endpoint (N)</th>
<th>ITT</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipsilateral Stroke (31-365d)</td>
<td>5 (1.7%)</td>
<td>3 (1.2%)</td>
</tr>
</tbody>
</table>
1-year Target Lesion Revascularization (TLR) ITT

1yr Clinically Driven TLR: 1.4%
1yr Restenosis (≥80%): 1.0%
1yr ECA Patency: 99.6%
One Year Endpoints Compare Favorably to Historical Data

<table>
<thead>
<tr>
<th></th>
<th>SCAFFOLD ITT</th>
<th>SCAFFOLD PP</th>
<th>ARCHER</th>
<th>BEACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipsilateral Stroke (31-365d)</td>
<td>1.7%</td>
<td>1.2%</td>
<td>1.3%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Clinically Driven TLR (1 Year)</td>
<td>1.4%</td>
<td>1.6%</td>
<td>2.2%</td>
<td></td>
</tr>
<tr>
<td>TLR (1 Year)</td>
<td>4.9%</td>
<td>4.1%</td>
<td></td>
<td>4.7%</td>
</tr>
</tbody>
</table>
SCAFFOLD Summary

• SCAFFOLD trial is the largest multicenter controlled evaluation of mesh-covered CAS

• The SCAFFOLD trial using the mesh-covered Gore Carotid Stent demonstrated:
 – 100% technical success
 – Low 30d stroke rate (1.1%) when used per protocol
 – Low late stroke rate (1.2%) and clinically driven TLR 1.4%
 – Maintenance of ECA
Summary

Mesh-covered carotid stents (along with integrated embolic protection/filtration, and direct carotid access with high-flow proximal protection) are likely to add benefit in terms of reducing not only minor stroke events but also surrogate DWI lesions.
Will Mesh Covered Stents Help Reduce The Risk Of Stroke?

William A. Gray MD
System Chief of Cardiovascular Services,
Main Line Health
President, Lankenau Heart Institute
Wynnewood, PA
USA