Latest experience with Dual Layer Stents in the lower limbs

Torsten Fuss
Vascular center of Elblandclinic Radebeul/Riesa
Disclosure

Speaker name:
Torsten Fuss

I have the following potential conflicts of interest to report:

☒ Consulting (Terumo, Biotronik, Abbott, Optimed, Straub)
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☐ I do not have any potential conflict of interest
Renzan Concept

- Dual Layer Stent for superior femoral (SFA) and popliteal arteries
- leverage micromesh protection Dual Layer Stent and delivery system design from Roadsaver
- design for high radial strength, low chronic outward force, improved fracture resistance and durability
- braided design for superior flexibility and adaptation to femoropopliteal arteries
Stent Features & Benefits

Dual Layer Braided Stent with Micro-mesh Technology

Inner layer
- **Micro-mesh**: very small cell size, designed to limit plaque prolapse and reduce distal embolization

Outer layer
- **Conformability**: braided Nitinol design to allow for in-vivo stent tapering and conformability
- **Flexibility**: closed cell stent designed to have similar flexibility to an open cell stent, resulting in excellent vessel wall apposition and adaptation to tortuous anatomy
- **Visibility**: 3 markers on each stent end designed for improved visibility
Renzan Delivery Catheter Design

- fully repositionable with up to 50% deployment
- push/pull handle: designed for a simple and controlled deployment process without stent jumping
- guidewire compatibility: 0.018”
- sheath compatibility: 6.0 Fr (min. ID: 0.087”/2.2 mm)
- construction: rapid exchange
- diameter 5 up to 8 mm and length 40 up to 100 mm (120 and 150 are coming soon)
Delivery Catheter Angiography View

- Retractor (at proximal stent)
- Predictor marker
- Distal outer cath marker
- Radiopaque sliding soft tip
Multi Axis Fatigue Testing

- MAPS Testing
 - competitors: Renzan, Supera, Everflex, Smart Flex, Zilverflex
 - 10 year=10 million cycles for multi-axis loading

- Results
 - competitor bare metal stents: 3-16 fractures
 - Renzan: **0 Fractures**

Data on file at MicroVention. TR16-232, Renzan =11, TR16-172, other brand stents n=1
Renzan Ovine Study

- **Implant Summary:**
 - 2 ovine models
 - 3 stents implanted in SFA/iliac arteries
 - 6,7,8 mm OD stents, 150mm length

- **Follow-up Highlights: 60 Days**
 - good stent radiopacity
 - no flow issues, side branches patent
 - stents well apposed to vessel wall
 - no migration

- **Histology:**
 - minimal vessel injury
 - minimal inflammation
 - minimal uncovered struts
 - stent almost completely incorporated into vessel wall
 - organized neointima composed of smooth muscle cells

Data on file at MicroVention
Renzan Porcine Study

GLP Study Design
- porcine model: Yucatan 50-70kg, Qty 8
- 4 animals/timepoint: 30, 180 Days
- stenting in iliac and SFA
- SFA stents covering side branch
- 5-8 mm OD, 40 mm lengths, 4 stents per animal

Follow-up Highlights: 30 & 180 Days
- good stent radiopacity
- no flow issues, side branches patent
- stents well apposed to vessel wall
- all stents patent

Histology:
- minimal vessel injury
- good neo-intimal coverage
- minimal inflammation

Data on file at MicroVention. TR16-098
Own Experience

- 7 real world patients
- High cardiovascular risk (3 or more risk factors)
- 2 or multi level PAOD
- 4 patients with occlusion from 4 up to 8 cm
- 4 weeks follow up in 7 patients and 3 in 12 weeks completed
Patient characteristics - comorbidities

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Age</th>
<th>Diab.</th>
<th>Hypert.</th>
<th>HLP</th>
<th>CHD</th>
<th>CVD</th>
<th>Smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67 y</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>61 y</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>60 y</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>51 y</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>63 y</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>81 y</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>58 y</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Nr.</td>
<td>RC</td>
<td>Calcific.</td>
<td>Stenosis</td>
<td>Occlusion</td>
<td>Region</td>
<td>Run off</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>severe</td>
<td>X</td>
<td></td>
<td>CFA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>less</td>
<td>X</td>
<td></td>
<td>PA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>less</td>
<td></td>
<td>X</td>
<td>SFA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>severe</td>
<td>X</td>
<td></td>
<td>EIA/SFA</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>less</td>
<td></td>
<td>X</td>
<td>SFA</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>severe</td>
<td></td>
<td>X</td>
<td>SFA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>moderate</td>
<td></td>
<td>X</td>
<td>CIA/EIA</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
4 weeks follow up

<table>
<thead>
<tr>
<th>Nr.</th>
<th>ABI before intervention</th>
<th>ABI after 4 weeks</th>
<th>RC before</th>
<th>RC after</th>
<th>sidebranches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.8</td>
<td>5</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0.7</td>
<td>0.9</td>
<td>3</td>
<td>0</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>0.8</td>
<td>3</td>
<td>0</td>
<td>open</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>1.1</td>
<td>3</td>
<td>0</td>
<td>open</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>1.0</td>
<td>3</td>
<td>0</td>
<td>open</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
<td>0.8</td>
<td>3</td>
<td>0</td>
<td>open</td>
</tr>
<tr>
<td>7</td>
<td>0.4</td>
<td>0.6</td>
<td>3</td>
<td>2</td>
<td>open</td>
</tr>
</tbody>
</table>
Case examples

1. Case – stenosis popliteal artery (P2)
Case examples

2. Case: Occlusion of distal SFA and popliteal artery
Case examples

3. Case: short occlusion in the hunter channel
Case examples

4. Case: occlusion of the EIA
Conclusion

• very good performance under the release: good visibility, easy, safe and correct placement
• very good performance in complex lesions, lesions with severe calcification/recoil and in challenging regions with tortuous anatomy
• no peripheral embolization in lesions with soft plaques/occlusions
• no occlusion of important side branches
• very good early results after 4 weeks and 3 month without re-stenosis/early thrombosis/re-occlusion under dual antiplatelet therapy for 4 weeks
• aggressive vessel preparation is mandatory
Thanks for your attention