NO……
I SEE THE QUALITY AND NECESSITY FOR STENTING

Robert Lookstein MD MHCDL
New York, NY
Speaker name: Robert Lookstein, MD

I have the following potential conflicts of interest to report:

- [x] Consulting
- [] Employment in industry
- [] Stockholder of a healthcare company
- [] Owner of a healthcare company
- [x] Other(s)

- [] I do not have any potential conflict of interest
Disclosures:
In the past 12 months, my spouse or myself have engaged in financial relationships as follows:

- **Consultant:**
 - Boston Scientific, Medtronic
- **Advisory Panel:**
 - Boston Scientific, Medtronic
- **Speakers Bureau:**
 - Abbott, Endologix
- **Research Support**
 - Philips Healthcare, Bard, BTG, Boston Scientific, Penumbra, Angiodynamics, Terumo
- **Clinical Events Committee**
 - Shockwave (Disrupt PAD), Intact Vascular (TOBA-2)
Peripheral Vascular Disease

Safety and Effectiveness of Stent Placement for Iliofemoral Venous Outflow Obstruction
Systematic Review and Meta-Analysis

Mahmood K. Razavi, MD; Michael R. Jaff, DO; Larry E. Miller, PhD
AT PRESENT

• There are no approved iliofemoral venous stents in the US
• Many are currently under investigation
 – COOK VIVO ZILVER VENA
 – VENITE VICI
 – BARD VERNACULAR
 – MEDTRONIC ABRE
 – OPTIMED SINUS
Current Venous Stent Trials in the US

- Wallstent
- Cook Zilver Vena
- Venite Vici
- Venovo
- Sinus Obliquus
- Abre
Physical Properties of Venous Stents: An Experimental Comparison

Darius Dabir¹ · Andreas Feisst¹ · Daniel Thomas¹ · Julian A. Luetkens¹ · Carsten Meyer¹ · Ana Kardulovic² · Matthias Menne² · Ulrich Steinseifer² · Hans H. Schild¹ · Daniel L. R. Kuettting¹
Ideal Venous Stent

- Appropriate Radial Force
- Appropriate Chronic Outward Force
- Appropriate flexibility
- Self-expandable
- Minimal foreshortening on deployment and balloon dilation
- Allow repeated shortening, twisting, and/or bending at the groin
- Sufficient flexibility not to kink at physiological angles
- Longer stents to avoid overlapping of multiple stents.
- Modular stents at the iliac confluence and IVC
Residual compression at the iliac venous crossing

'Arterial' stent - open cell design

Venous Stent - open cell design

Conebeam CT imaging

Venous - hybrid unique ring design

Braided stainless steel stent

Venous Stent - closed cell design
VIRTUS VENOUS STENT Trial

- 30 Sites Worldwide
- 200 Patients
- Key End Points
 - Primary Stent Patency at 12 months
 - Safety
VIRTUS Trial Design

<table>
<thead>
<tr>
<th>Objective</th>
<th>Assess safety & effectiveness in achieving patency of target venous lesion through 12-M post stent placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>MAEs @ 30 days</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>Primary Patency @ 12-M</td>
</tr>
</tbody>
</table>
| Principal Investigators | - Mahmood Razavi, MD
| | - William Marston, MD |
| Study Design | Prospective, multicenter, single arm non-randomized, up to 45 sites worldwide |
| Patient Population | 200 subjects with clinically significant chronic non-malignant obstruction of the iliofemoral venous segment – first 30 were feasibility. |
| Core Labs | Venography: Syntactx: IVUS: St. Lukes: DUS: VasCore/MGH |
VIRTUS Trial

- Pts with non-thrombotic & chronic post thrombotic outflow obstruction enrolled in a pre-defined ratio of NT to PT.
- Acute thrombotic pts excluded up to 90 days after DVT
- Enrollment completed in Nov 2016
- Only study requiring 3 different imaging modalities at baseline and follow up (venography, IVUS, Duplex imaging), all core lab adjudicated
Procedural technical success defined as final residual target vessel diameter stenosis of ≤50% as measured by venogram.
• Primary endpoint was met: Primary patency rate exceeded the performance goal of 72.1% (p<0.0001)a,b

• Primary patency based on venography onlyc
 • 79.8% Post-thrombotic
 • 96.2% Non-thrombotic

Primary patency defined as stenosis of target lesion ≤50% (based on venogram) without surgical or endovascular intervention on target vessel to restore patency.

aFor the primary endpoint, patients who did not have venography performed at 12 months had their result imputed by random selection from subjects with a venogram result who had the same etiology and the same DUS outcome (if available).

bPrimary effectiveness analysis based on the combined result from 15 imputations; t-statistic 4.0; p<0.0001.

c12-month venograms were available for 125 patients.
- Self-expanding nitinol
- Dedicated design for venous vessels
- 6 markers at each end (3 nitinol, 3 tantalum)
- Ends flared 3mm to ensure wall apposition
- Stent Diameters: 10, 12, 14, 16, 18, 20 mm
- Stent Lengths: 40-160 mm (in 20 mm increments)
- 8-10 F sheath depending on device diameter

- Tri-axial delivery system
- .035” OTW
- Dual-speed deployment thumbwheel
- Ergonomic handle

VENOVO® Venous Stent System
VENOVO™ Venous Stent

<table>
<thead>
<tr>
<th>Stent Lengths</th>
<th>Stent Diameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mm</td>
<td>8F, 10 mm</td>
</tr>
<tr>
<td>40 mm</td>
<td>8F</td>
</tr>
<tr>
<td>60 mm</td>
<td>8F</td>
</tr>
<tr>
<td>80 mm</td>
<td>8F</td>
</tr>
<tr>
<td>100 mm</td>
<td>8F</td>
</tr>
<tr>
<td>120 mm</td>
<td>8F</td>
</tr>
<tr>
<td>140 mm</td>
<td>8F</td>
</tr>
<tr>
<td>160 mm</td>
<td>8F</td>
</tr>
<tr>
<td>120 mm</td>
<td>9F</td>
</tr>
<tr>
<td>160 mm</td>
<td>10F</td>
</tr>
<tr>
<td>180 mm</td>
<td>10F</td>
</tr>
<tr>
<td>200 mm</td>
<td>10F</td>
</tr>
</tbody>
</table>
VERNACULAR Trial

- **Design**: Prospective, multi-center study of the VENOVO® venous stent
- **Investigative Sites**: Europe, Australia, and the US
- **Investigator**: Michael Dake MD
- **Patients Eligible**: Acute or Chronic DVT, May-Thurner Syndrome, or any combination of the above
- **Trial Indication**: For the treatment of stenoses and occlusions in the iliac and femoral veins.
- **Primary endpoints**:
 - Primary patency (12 months)
 - Freedom from MAE (30 days)
Results

• Primary Patency at 12 months 88.3%
• Freedom for CD-TLR 92.6%
• Stent fractures at 12 months 0.0%
Cook VIVO IDE Study

- **Purpose**: To evaluate the safety and effectiveness of the Zilver Vena Venous Stent in the treatment of symptomatic iliofemoral venous outflow obstruction
- **Study PI’s**:
 - Anthony Comerota
 - “Rusty” Hofmann
- **Study initiated**: October 2013
- **Target enrollment**: 243 patients
- **To date**: 239 enrolled
Abre™ Venous Self-Expanding stent
Abre™ VENOUS SELF-EXPANDING STENT SYSTEM

- Global Study
- Principal Investigators: Erin Murphy MD and Stephen Black MD
- 200 global patients
- 30 major adverse events
- 12 month primary patency
• Several unique device designs are currently under investigation
 – All nitinol
 – Closed and open cell designs
 – Able to treat 14-20mm diameter
The Effect of Stenting on Venous Hypertension: Results Using a Treadmill Stress Test with Invasive Pressure Measurements in Patients with Iliofemoral Venous Obstruction

Ralph L.M. Kurstjens a,b,c,*, Mark A.F. de Wolf a,b, Helena W. Konijn a, Irwin M. Toonder a, Patricia J. Nelemans d, Jorinde H.H. van Laanen a, Rick de Graaf e, Cees H.A. Wittens a,b,f

aDepartment of Vascular Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
bCardiovascular Research Institute Maastricht, Maastricht, The Netherlands
cDepartment of Obstetrics & Gynaecology, Haga Teaching Hospital, The Hague, The Netherlands
dDepartment of Epidemiology, Maastricht University Medical Centre, Maastricht, The Netherlands
eDepartment of Radiology, Maastricht University Medical Centre, Maastricht, The Netherlands
fDepartment of Vascular Surgery, University Hospital Aachen, Aachen, The Netherlands

Table 2. Common femoral vein pressures during walking and in the supine and erect position.

<table>
<thead>
<tr>
<th>Pressure, mmHg</th>
<th>Before intervention</th>
<th>Three months after intervention</th>
<th>Change</th>
<th>Difference between affected and non-affected limb</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFV change during walking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected limb</td>
<td>34.8 ± 23.1</td>
<td>12.6 ± 7.6</td>
<td>−22.3 ± 24.8</td>
<td>−26.2 (95% CI −41.2 to −11.3) .003 a</td>
<td></td>
</tr>
<tr>
<td>Non-affected limb</td>
<td>3.9 ± 5.8</td>
<td>7.9 ± 3.0</td>
<td>4.0 ± 6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFV erect</td>
<td></td>
<td></td>
<td></td>
<td>−8.3 (95% CI −23.9 to 7.2) .263</td>
<td></td>
</tr>
<tr>
<td>Affected limb</td>
<td>59.5 ± 12.5</td>
<td>60.5 ± 8.2</td>
<td>1.0 ± 16.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-affected limb</td>
<td>48.5 ± 17.2</td>
<td>57.9 ± 12.4</td>
<td>9.3 ± 25.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFV supine</td>
<td></td>
<td></td>
<td></td>
<td>−3.5 (95% CI −8.7 to 1.8) .168</td>
<td></td>
</tr>
<tr>
<td>Affected limb</td>
<td>24.0 ± 7.6</td>
<td>22.6 ± 6.7</td>
<td>−2.1 ± 7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-affected limb</td>
<td>20.0 ± 8.4</td>
<td>21.3 ± 5.9</td>
<td>1.4 ± 7.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Plus–minus values are means ±standard deviation. CI = confidence interval; CFV = common femoral vein.

a Statistically significant.
Figure 2. Effect of stenting on venous hypertension compared with control limbs.

<table>
<thead>
<tr>
<th></th>
<th>Before intervention</th>
<th>After intervention</th>
<th>Difference effect between affected and non-affected limb</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEINES-QOL</td>
<td>50.3 ± 13.0</td>
<td>75.6 ± 22.2</td>
<td></td>
<td><.001a</td>
</tr>
<tr>
<td>VEINES-Sym</td>
<td>47.6 ± 14.9</td>
<td>66.6 ± 24.0</td>
<td></td>
<td>.002a</td>
</tr>
<tr>
<td>VCSS</td>
<td></td>
<td></td>
<td>2.6 (95% CI 0.5—4.7)</td>
<td>.019a</td>
</tr>
<tr>
<td>Affected limb</td>
<td>7.7 ± 2.5</td>
<td>5.4 ± 3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-affected limb</td>
<td>1.3 ± 1.4</td>
<td>1.6 ± 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Villalta score</td>
<td></td>
<td></td>
<td>4.5 (95% CI 1.9—7.1)</td>
<td>.003a</td>
</tr>
<tr>
<td>Affected limb</td>
<td>10.2 ± 3.2</td>
<td>6.3 ± 4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-affected limb</td>
<td>1.8 ± 1.5</td>
<td>2.4 ± 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain free walking time, minutes</td>
<td>9.8 ± 6.5</td>
<td>16.4 ± 9.1</td>
<td>(4 completed test without pain)</td>
<td>.003a</td>
</tr>
<tr>
<td>Maximum walking time, minutes</td>
<td>18.9 ± 7.4</td>
<td>22.3 ± 4.7</td>
<td>(3 completed test without stopping)</td>
<td>.019a</td>
</tr>
</tbody>
</table>

a Plus-minus values are means ± standard deviation. CI = confidence interval; VCSS = Venous Clinical Severity Score.

Note.
DO WE NEED VENOUS STENTS?
In summary

- Numerous Venous stents are being investigated
- The data is now available
- We are currently awaiting FDA approval in US
- More research is needed to identify the appropriate device for specific lesion subsets
 - Anatomic
 - Physiologic
NO......
I SEE THE QUALITY AND NECESSITY FOR STENTING

Robert Lookstein MD MHCDL
New York, NY