The evolving management of ruptured AAAs
An Australian centre experience

Dr. Cindy Wang
Dr. Chris Selvaraj, Dr. Charles Fisher, Dr. Vikram Puttaswamy, Dr. Michael Neale, Dr. Shen Wong, Dr. Walid Mohabbat, Dr. Daniel Nguyen

Royal North Shore Hospital Sydney, Australia
Disclosure

Speaker name:
Dr. Cindy Wang
I do not have any potential conflict of interest
January 2010 – March 2018
Infrarenal AAA only
Elective open AAA = 30
Elective EVAR = 283
Method

- Retrospective - AVA, EMR, Ryerson Index
- Jan 2010-Mar 2018
- Included any patient who was operated on with a rAAA
- Excluded:
 - No procedure done
 - Suprarenal/mycotic/isolated iliac aneurysm
 - Previous endoluminal repair
 - Tender but UNruptured AAA
Results

Ruptured AAA by type of repair

- Endovascular
- Open
- Conversion
Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Endo</th>
<th>Open</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age</td>
<td>77+/-10</td>
<td>76+/-8</td>
<td>77 +/-4</td>
</tr>
<tr>
<td>Male</td>
<td>83%</td>
<td>89%</td>
<td>100%</td>
</tr>
<tr>
<td>IHD</td>
<td>43%</td>
<td>32%</td>
<td>33%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>13%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HTN</td>
<td>83%</td>
<td>68%</td>
<td>67%</td>
</tr>
<tr>
<td>Ex smoker</td>
<td>53%</td>
<td>53%</td>
<td>33%</td>
</tr>
<tr>
<td>Current smoker</td>
<td>20%</td>
<td>11%</td>
<td>0%</td>
</tr>
<tr>
<td>Create >150</td>
<td>17%</td>
<td>11%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Diameter of rAAA (mm)

Maximum diameter of ruptured AAAs at RNSH by surgery type

- Open: 85 mm
- EVG: 70 mm
- Conversion: 90 mm
Median length of surgery

*P-value = 0.086 between Open and Endo
<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Endo</th>
<th>Open</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation to Tertiary</td>
<td>21/52 (40%)</td>
<td>27/30 (73%)</td>
<td>10/19 (53%)</td>
<td>3/3 (100%)</td>
</tr>
<tr>
<td>Transferred</td>
<td>31/52 (60%)</td>
<td>8/30 (27%)</td>
<td>9/19 (47%)</td>
<td>0/3 (0%)</td>
</tr>
<tr>
<td>In-hospital mortality</td>
<td>12/52 (23%)</td>
<td>5/30 (17%)</td>
<td>5/19 (26%)</td>
<td>2/3 (67%)</td>
</tr>
<tr>
<td>Median LOS(range)</td>
<td>10(3-62)</td>
<td>8(3-32)</td>
<td>13(7-62)</td>
<td>22(-)</td>
</tr>
<tr>
<td>GA</td>
<td>40/52 (77%)</td>
<td>18/30 (60%)</td>
<td>19/19 (100%)</td>
<td>3/3 (100%)</td>
</tr>
<tr>
<td>LA/sedation</td>
<td>12/52 (23%)</td>
<td>12/30 (40%)</td>
<td>0/19 (0%)</td>
<td>0/3 (0%)</td>
</tr>
</tbody>
</table>

Excluding those who died in hospital
Outcomes in mortality by surgery type

- 3 prospective RCTs included.
- There was no difference between the 2 interventions on 30-day (or in-hospital) mortality, OR 0.91 (95% CI 0.67 to 1.22; p=0.52).
- Conclusions difficult due to lack of reporting in trials and overall paucity of data.

Figure 2 Short-term mortality (30-day or in-hospital) of emergency endovascular aneurysm repair (eEVAR) versus open repair.
<table>
<thead>
<tr>
<th>Time</th>
<th>No. at risk</th>
<th>Deaths</th>
<th>Survival</th>
<th>SE</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Endovascular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In hospital</td>
<td>30</td>
<td>5</td>
<td>0.833</td>
<td>0.068</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>1 year</td>
<td>21</td>
<td>1</td>
<td>0.794</td>
<td>0.0755</td>
<td>0.659</td>
</tr>
<tr>
<td></td>
<td>3 years</td>
<td>12</td>
<td>1</td>
<td>0.728</td>
<td>0.0938</td>
<td>0.565</td>
</tr>
<tr>
<td></td>
<td>5 years</td>
<td>9</td>
<td>2</td>
<td>0.566</td>
<td>0.1244</td>
<td>0.368</td>
</tr>
<tr>
<td>-</td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In hospital</td>
<td>19</td>
<td>5</td>
<td>0.737</td>
<td>0.101</td>
<td>0.563</td>
</tr>
<tr>
<td></td>
<td>5 years</td>
<td>5</td>
<td>2</td>
<td>0.442</td>
<td>0.172</td>
<td>0.206</td>
</tr>
</tbody>
</table>

Survival rate of RNSH rAAA patients by surgery type

Survival probability

Years

0.00
0.25
0.50
0.75
1.00

Years

p = 0.59
FIGURE 9 Kaplan–Meier estimates for overall survival, by randomised group. For (a) all 613 participants who were randomised (log-rank test $p = 0.40$); and (b) the 502 participants with a confirmed rupture for whom repair had started (log-rank test $p = 0.186$).
Survival rate of RNSH rAAA patients by transfer status

<table>
<thead>
<tr>
<th>Time</th>
<th>No. at risk</th>
<th>Deaths</th>
<th>Survival</th>
<th>SE</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transferred</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In hospital</td>
<td>14</td>
<td>3</td>
<td>0.786</td>
<td>0.11</td>
<td>0.598</td>
<td>1</td>
</tr>
<tr>
<td>5 years</td>
<td>4</td>
<td>1</td>
<td>0.589</td>
<td>0.189</td>
<td>0.314</td>
<td>1</td>
</tr>
<tr>
<td>Tertiary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In hospital</td>
<td>38</td>
<td>9</td>
<td>0.763</td>
<td>0.069</td>
<td>0.639</td>
<td>0.911</td>
</tr>
<tr>
<td>1 year</td>
<td>24</td>
<td>1</td>
<td>0.731</td>
<td>0.0731</td>
<td>0.601</td>
<td>0.89</td>
</tr>
<tr>
<td>5 years</td>
<td>13</td>
<td>4</td>
<td>0.506</td>
<td>0.1064</td>
<td>0.335</td>
<td>0.764</td>
</tr>
<tr>
<td>Time</td>
<td>No. at risk</td>
<td>Death</td>
<td>Survival</td>
<td>SE</td>
<td>Lower 95%</td>
<td>Upper 95%</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>GA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In hospital</td>
<td>40</td>
<td>10</td>
<td>0.75</td>
<td>0.0685</td>
<td>0.627</td>
<td>0.897</td>
</tr>
<tr>
<td>5 years</td>
<td>10</td>
<td>4</td>
<td>0.45</td>
<td>0.1232</td>
<td>0.263</td>
<td>0.77</td>
</tr>
<tr>
<td>LA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In hospital</td>
<td>12</td>
<td>2</td>
<td>0.833</td>
<td>0.108</td>
<td>0.647</td>
<td>1</td>
</tr>
<tr>
<td>1 year</td>
<td>10</td>
<td>1</td>
<td>0.75</td>
<td>0.125</td>
<td>0.541</td>
<td>1</td>
</tr>
<tr>
<td>3 years</td>
<td>5</td>
<td>1</td>
<td>0.6</td>
<td>0.167</td>
<td>0.347</td>
<td>1</td>
</tr>
</tbody>
</table>

Survival rate of RNSH rAAA patients by anaesthesia type

\[p = 0.77 \]
Open vs Endo trends by year

The Erasmus University Medical Center Experience: endovascular versus open surgical repair of ruptured AAAs (1991 – 2012)

Conclusion

• Short and long term survival of rEVAR is comparable to open surgery – sometimes better
• Patients have shorter median duration of surgery time and LOS
• As better endograft design and technology emerge, more rAAAs will be suitable for EVAR
The evolving management of ruptured AAAs
An Australian centre experience

Dr. Cindy Wang
Dr. Chris Selvaraj, Dr. Charles Fisher, Dr. Vikram Puttaswamy, Dr. Michael Neale, Dr. Shen Wong, Dr. Walid Mohabbat, Dr. Daniel Nguyen

Royal North Shore Hospital Sydney, Australia