Different guidewire construction

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico
University of Bern
Switzerland
Disclosure

Speaker name:

I have the following potential conflicts of interest to report:

☐ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☒ I do not have any potential conflict of interest
Basic guidewire construction
Basic guidewire construction

- **Core**
- **Coil**
Basic guidewire construction

- Core
- Coil
- Coating
Guide wire characteristics

- Tip Load
- Coatings
- Core
- Coil

Feel & Performance
20th century
20th century

Normal core
21st century
Round core vs. flat core

- Flat Core: Flat so whip motion occurs
- Round Core: Better Torque Response, No Whip Motion

Whip motion

No whip motion
ACT-ONE
Torque control-no whip motion
Durability
Shape retention

Crush test

Halberd 0.018”
Coating

Hydrophobic = wax-like when wet

Provides tactile feedback

Hydrophilic = gel-like when wet

Slide through vessels + lesions
Coating

Hybrid Coating = Tactile feedback with hydrophilic performance

Polymer Jacket = gel-like & smooth (Lubricious)

Tracks / slides through tortuous vessels and heavily calcified lesions / micro-channels – reduces friction.
Polymer Jacket Micrograph
Coating

- Polymer Cover + Hydrophilic Coating
- Hydrophilic With uncoated tip
- Hydrophobic
- TACTILE FEEL
- LUBRICITY

- Regalia
- Gladius
- Command
- V14/18
- Victory
- Halberd
- Gaia PV
- Astato series
Tip design

Long Outer Coils = Flexibility

Short Tip Coils = Support

Polymer Covered Coils = Lubricous
Taper

- **Shorter Taper**
 - Prolapse

- **Long Taper**
 - Successful Tracking
Tip end design

Ball tip has been sharpened to give the necessary penetration ability to enter hard occlusions, while tip flexibility is maintained.

- Conventional guide wire plain ball tip
- ASAHI micro-cone tip
Tip end design

Gaia/Halberd

Astato

Treasure

Tip end ball tip shape / Non-tapered design
Tip end design

Micro cone tip

Plain ball tip
Cap penetration
Cap penetration and shape retention
Summary

- High Torque Performance
- Enhanced tip durability
- Durable tip shape
Guide wire characteristics in practice

- Smooth Transition through thrombus
- 1:1 Torque Response
Guide wire characteristics in practice
Conclusion

• New guide wire technology allows better control in crossing
 – Optimal torque control
 – Enhanced penetration characteristics
 – Shape retention
Different guidewire construction

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico
University of Bern
Switzerland