Lessons learned from 257 patients treated by surgical correction of dialysis steal syndrome

Samuel N. Steerman, MD, FACS, RPVI
Assistant Professor Eastern Virginia Medical School
Sentara Vascular Specialists
Norfolk, VA, USA
Disclosure

Speaker name: Samuel N. Steerman

I have the following potential conflicts of interest to report:

- Consulting – Medtronic, Bard/BD, Abbott, Penumbra
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)

- I do not have any potential conflict of interest
Background

- Dialysis access steal syndrome
 - Incidence rate can be as high as 8%, but can vary depending on access configuration and population

Steal Classification

1: No/Low-grade steal - retrograde flow in distal artery without complaints
2: Mild - Pain on exertion and/or with hemodialysis
3: Moderate - Rest pain
4: Severe - Ischemic changes (ex. Ulceration, necrosis, gangrene)
Surgical Management of Steal

- Distal Revascularization with Interval Ligation (DRIL)
- Proximalization of arterial Inflow (PAI)
- Banding
- Revision Using Distal Inflow (RUDI)
- Access Ligation
Methods

- Retrospective review of dialysis patients who underwent surgical correction for steal syndrome within a single high-volume Vascular Surgery practice (January 2009 – May 2017)

- Steal syndrome diagnosis based on symptom presentation and Digit-Brachial Index < 0.45
Results: Demographics

257 patients underwent surgical management for steal

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age (years)</td>
<td>63 (range: 23-90)</td>
</tr>
<tr>
<td>BMI</td>
<td>30.4 (range: 14.6-56.1)</td>
</tr>
<tr>
<td>Gender</td>
<td>65.7% (Female)</td>
</tr>
<tr>
<td>Race/Ethnicity: African-American</td>
<td>53.8%</td>
</tr>
<tr>
<td>Positive Smoking History</td>
<td>51%</td>
</tr>
<tr>
<td>History of Diabetes Mellitus</td>
<td>74.7%</td>
</tr>
<tr>
<td>History of Peripheral Arterial Disease</td>
<td>17.5%</td>
</tr>
<tr>
<td>Access Location: Left upper extremity</td>
<td>68.1%</td>
</tr>
<tr>
<td>Access on non-dominant hand</td>
<td>76.3%</td>
</tr>
<tr>
<td>Prior failed access procedures</td>
<td>35.4%</td>
</tr>
<tr>
<td>Prior access procedures on extremity that</td>
<td>19.5%</td>
</tr>
<tr>
<td>developed steal</td>
<td></td>
</tr>
<tr>
<td>Number of prior access procedures on the</td>
<td></td>
</tr>
<tr>
<td>extremity that developed steal</td>
<td></td>
</tr>
<tr>
<td>0: 80.2%</td>
<td></td>
</tr>
<tr>
<td>1: 16.2%</td>
<td></td>
</tr>
<tr>
<td>2: 2.8%</td>
<td></td>
</tr>
<tr>
<td>3: 0.8%</td>
<td></td>
</tr>
</tbody>
</table>
Access Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>AVF (162)</th>
<th>AVG (95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axillary a.-Axillary v.</td>
<td></td>
<td>9.5%</td>
</tr>
<tr>
<td>Brachial a.-Axillary v.</td>
<td></td>
<td>75.8%</td>
</tr>
<tr>
<td>Brachial a.-Brachial v.</td>
<td></td>
<td>11.6%</td>
</tr>
<tr>
<td>Brachial a.-Basilic v.</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>Brachial a.-Cephalic v.</td>
<td></td>
<td>61.4%</td>
</tr>
<tr>
<td>Radial a.-Cephalic v.</td>
<td></td>
<td>13.6%</td>
</tr>
<tr>
<td>Radial a.-Basilic v.</td>
<td></td>
<td>0.6%</td>
</tr>
<tr>
<td>Basilic Vein Transposition (BVT)</td>
<td></td>
<td>24.7%</td>
</tr>
</tbody>
</table>
Surgical Interventions for Steal (n = 257)

- DRIL: 35.4%
- RUDI: 0.4%
- PAI: 12.8%
- Banding: 18.7%
- Access Ligation: 22.6%
- Distal Ligation: 5.1%
- PTA: 4.7%
- Other: 0.4%
All patients (257)

- DRIL (91)
 - Complete Symptom Resolution: 68.1%

- RUDI (1)
 - Complete Symptom Resolution: 0%

- PAI (33)
 - Complete Symptom Resolution: 75.8%

- Banding (48)
 - Complete Symptom Resolution: 54.2%

- Access Ligation (58)
 - Complete Symptom Resolution: 87.9%

- Distal Ligation (13)
 - Complete Symptom Resolution: 53.8%

- PTA (12)
 - Complete Symptom Resolution: 91.7%

- Other (1)
 - Complete Symptom Resolution: 100%
Results: AVF Symptom Resolution

Complete Resolution for AVF ($x^2=0.001$)

- DRIL: 64.60%
- PAI: 66.70%
- Banding: 26.30%
- Access Ligation: 100%

Partial Symptom Resolution for AVF ($x^2=0.286$)

- DRIL: 88.20%
- PAI: 100%
- Banding: 57.10%
Results: AVG Symptom Resolution

Complete Resolution for AVG

- DRIL: 75%
- PAI: 69.20%
- Banding: 66.70%
- Access Ligation: 66.70%

Partial Symptom Resolution for AVG

- DRIL: 100%
- PAI: 75%
- Banding: 100%
- Access Ligation: 100%
Conclusions

- AVG with steal had a higher rate of symptom resolution after surgical intervention compared to AVF with steal.
 - Symptom resolution for steal in AVGs was shown to have equivalent results irrespective of the surgical modality chosen.
- For steal in AVFs, DRIL and PAI were superior to banding with statistical significance and allowed maintenance of patent access, as compared to access ligation.
Lessons learned from 257 patients treated by surgical correction of dialysis steal syndrome

Samuel N. Steerman, MD, FACS, RPVI
Assistant Professor Eastern Virginia Medical School
Sentara Vascular Specialists
Norfolk, VA, USA