A Look Into The Methods: Merits and Limits of Meta-analysis

Tim Hanson, PhD, FASA, FISI
Senior Statistical Manager, Corporate Biostatistics, Medtronic
Adjunct Professor, University of Minnesota Division Biostatistics
Disclosures

Tim Hanson, PhD

Employee of Medtronic
Adjunct Professor at the University of Minnesota
What Is A Meta-analysis?

A statistical technique to quantitatively synthesize summary data from several related studies

<table>
<thead>
<tr>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Combining studies “increases” sample size, precision</td>
</tr>
<tr>
<td>❑ Power to uncover trends across studies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Limited to published summary data</td>
</tr>
<tr>
<td>❑ Inappropriate pooling and summary of heterogenous studies</td>
</tr>
<tr>
<td>❑ Only suggests association, does not prove a hypothesis</td>
</tr>
</tbody>
</table>
Meta-analyses Increasing Exponentially

PubMed search of the word “meta-analysis” returned 154727 hits Jan 9, 2019

Meta-analysis have gained popularity as an easy tool to help synthesize data Jan 9, 2019
Two Types of Statistical Models Used

One Fixed Effect
- One fixed treatment effect across all studies
- Not appropriate when studies are culled from literature review

Random Effects
- Effects change from study to study
- Reflects different study designs, populations, and treatments
- Focus is on an overall treatment effect
Random Effects Meta-analysis: Assumptions Matter

- Treatment effects follow a bell-shaped curve, also called a Gaussian or normal curve.

- Unfortunately, this assumption is **frequently violated** in meta-analyses.

- Example: for Katsanos et al. (2018) two-year data, reject sample log-relative risks are normal ($p=0.028$).
Katsanos et al. Two-year Data: Data vs. Assumptions

- Katsanos et al. meta analysis uses free “meta” software package set to defaults
- Assumes normality of treatment effects; doubtful based on plot & p=0.028
- Also uses method that underestimates between-study variability dating to 1980’s
- Intervals and p-values too small!
- Using correct tool changes results
Re-analysis of Two- and Five-year Data

Two-year data
- Normal model overall RR = 1.72 (1.12,2.73), p=0.02
- Non-normal model RR = 1.73 (0.87,3.59), p=0.14

Five-year data
- Normal model overall RR = 1.82 (0.92,3.61), p=0.09
- Non-normal model RR = 1.82 (0.51,6.59), p=0.36

Re-analysis shows no significant difference for one-, two-, & five-year follow-up.

Trend persists, but urgency diminishes.
Meta-analysis can show association, not causation. That’s what RCTs are for.
Association is NOT Causation

Risk Difference vs. PTX Exposure

\[\text{Exposure}_i = \text{Dose}_i (\pi \times D_{i} \times \text{Length}_i) \times \text{Time}_i \]

Risk Difference vs. Hypertension

\[\text{Exposure}_i = \text{Hypertension}_i \times \text{Time}_i \]

1. Katsanos K, et al., J Am Heart Assoc 2018;7:e011245. DOI: 10.1161/JAHA.118.011245
Association is NOT Causation

Risk Difference vs. PTX Exposure

\[\text{Exposure}_i = \text{Dose}_i (\pi \times D_i \times \text{Length}_i) \times \text{Time}_i \]

Risk Difference vs. # Letters in Study Title

\[\text{Exposure}_i = \# \text{Letters}_i \times \text{Time}_i \]

Study Name	# Letters
FAIR | 4
LEVANT II | 9
BATTLE | 6
IN.PACT SFA | 11
THUNDER | 7
ISAR-PEBIS | 10

1. Katsanos K, et al., J Am Heart Assoc 2018;7:e011245. DOI: 10.1161/JAHA.118.011245
Conclusions

- Understand and check assumptions going into model. Use tools *appropriately*.

- Results change using correct methodology!

- Meta-analysis simply averages study-effects; suggests *associations* to examine more carefully with patient-level data or new randomized trial.

- In presentations to follow, patient-level analyses will give much clearer understanding of paclitaxel and mortality.
A Look Into The Methods: Merits and Limits of Meta-analysis

Tim Hanson, PhD, FASA, FISI
Senior Statistical Manager, Corporate Biostatistics, Medtronic
Adjunct Professor, University of Minnesota Division Biostatistics