Tips and tricks to optimize preinterventional imaging with CO2 angiography and no-contrast MR angiography

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico
University of Bern
Switzerland
Disclosure

Speaker name:

I have the following potential conflicts of interest to report:

☐ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☐ I do not have any potential conflict of interest
Zero Contrast Procedures

• Use of non-enhanced MRA and CO$_2$ angiography for work-up
 – (EVAR)
 – Peripheral applications
Iodinated contrast

- Nephrotoxicity
- Allergic reactions

Gd-based contrast

• Occurrence of nephrogenic systemic fibrosis
• Nephrotoxicity
 – Various case reports of acute renal failure at high dose
 – Safe in dosage <0.4 mmol/kg

Gemery et al, AJR 1998; 171:1277-1278
Kaufman et al, Radiology 1999; 212:280-284
Le Blanche et al, AJR 2002; 179:1023-1028
Roserioreanu et al, JVIR 2005;16:297-298
Nyman et al, Radiology 2002; 223:311-318
MRA without contrast

• In-flow techniques (TOF)
 – Limited FOV
 – Susceptible to artifacts

Wheaton AJ et al JMRI 2012;36:286–304
MRA-QISS

Figure 1: Diagram of QISS pulse sequence. A two-dimensional single-shot balanced steady-state free precession (bSSFP) pulse sequence is used to image arterial spins within the section during diastole, when flow is slow or absent. k_y = phase-encoding line, QI = quiescent interval, $\alpha/2$ = one half the radiofrequency excitation flip angle.
MRA-QISS

Edelman RR et al, Magnetom Flash 2014
QISS vs. CE-MRA PAD
QISS vs. CE-MRA PAD
QISS vs. CE-MRA PAD
QISS vs. CE-MRA PAD

QISS

CE-MRA

[Images of blood flow comparisons]
QISS MRA vs. CE-MRA
QISS-MRA vs. CTA vs. DSA

- QISS-MRA provides high diagnostic accuracy compared with DSA
- QISS-MRA less prone to image artifacts than CTA
- QISS-MRA better visualizes heavily calcified segments with impaired flow
- QISS-MRA obviates the need for contrast administration in PAD patients
- QISS and QIR/ECG-FSE MR angiography protocols demonstrate comparable diagnostic accuracies with high specificity
- In segment-based analyses, there was no difference between QISS-MRA and CE-MRA in sensitivity or specificity

Varga-Szemes A et al, JACC Cardiovasc Imaging 2017;10:1116-1124
Hanrahan CJ JVIR 2018;29:1585-1594
Wei LM, JET 2019;26:44–53
CO$_2$ angiography

- Lack of toxicity or allergic reactions
- Rapid intravascular clearance
- Buoyancy (potentially disadvantageous)
- Ultra-low viscosity/density
- Reflux (ostial depiction)
- Nonmiscibility (fluid displacement)
- Colorless and odorless (potentially dangerous with ‘old technology’)
- Compressibility (pressure build-up)

Sharafuddin MJ et al JVS 2017;66:618-637
Old technology
Hand-held injector
Automated CO$_2$ injector

Angiodroid
Case #1

Use ‘stacking of images’
Case #1

Use ‘stacking of images’
Case #2

- Severe iodine allergy
Case #2
Case #2

- Balloon inflation with Gd
Case #2

- Balloon inflation with Gd
- Balloon rupture!
Case #2
Conclusions

• Current technology (non CE-MRA and CO$_2$ angiography allows for zero-contrast procedures for peripheral arterial endovascular procedures

• Think about
 – ‘image stacking’
 – Use of Gd for balloon filling in allergic patients

• MORE CO$_2$!
MORE CO$_2$!
Tips and tricks to optimize preinterventional imaging with CO2 angiography and no-contrast MR angiography

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico
University of Bern
Switzerland
Tips and tricks to optimize preinterventional imaging with CO2 angiography and no-contrast MR angiography

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico
University of Bern
Switzerland