The trials and tribulations of hawking in the tibials

Dr. Vikram Puttaswamy

Vascular Surgeon
Head of Department of Vascular Surgery

Royal North Shore Hospital
Sydney, Australia
Disclosure
Speaker name: Vikram Puttaswamy

I have the following potential conflicts of interest to report:

- Receipt of grants/research support
 Details:
- Receipt of honoraria and travel support
 Details:
- Employment in industry
 Details:
- Shareholder in a healthcare company
 Details:
- Owner of a healthcare company
 Details:

I do not have any potential conflicts of interest to report
The standard endovascular options in tibial arteries

• Angioplasty – is the mainstay
 • POBA or DCB?
 • Leaves nothing behind, but significant dissection and recoil occurs

• Stents
 • Self expanding / balloon expandable
 • BMS or DES?
 • All stent options are likely to affect mean luminal diameter, possibly reducing flow in these small vessels

• Very limited clinical data to tell us what is the best treatment option
• Where does atherectomy sit as far as results in the tibials are concerned and where does it fit in our treatment algorithm?

• From the limited clinical data available, directional atherectomy using the Hawk system, is the obvious choice of atherectomy system to use in the tibial arteries
Atherectomy Trials – 30 day to 1 year outcomes

<table>
<thead>
<tr>
<th>Trial</th>
<th>Patient Number</th>
<th>Core Lab Adjudicate</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional Atherectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser Atherectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotational Atherectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbital Atherectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT Atherectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Primary patency by duplex ultrasound at 12 months (PSVR ≤2.4 with no clinically-driven reintervention); Patency value determined by Kaplan-Meier analysis.

DEFINITIVE LE Patency – CLI patients

Primary Patency (%)

<table>
<thead>
<tr>
<th></th>
<th>SFA</th>
<th>Popliteal</th>
<th>Infrapopliteal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Length:</td>
<td>8.6 cm</td>
<td>5.4 cm</td>
<td>6.0 cm</td>
</tr>
<tr>
<td>Number of Lesions:</td>
<td>135</td>
<td>48</td>
<td>96</td>
</tr>
</tbody>
</table>

HawkOne™ Directional Atherectomy System

Treat All Morphologies
Treat all atherosclerotic plaque efficiently and effectively, including severe calcium

Procedural Efficiency
Streamline procedural efficiency with improved crossing and cleaning capabilities

Note: Product claims for the HawkOne™ device are made in comparison to the TurboHawk™ platform.

Indications, contraindications, warnings, and instructions for use can be found in the product labeling supplied with each device.

CAUTION: Federal (USA) law restricts these devices to sale by or on the order of a physician.
Directional Atherectomy Systems: TurboHawk™ and HawkOne™ Device Specifications

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Catalog Number</th>
<th>Vessel Diameter (mm)</th>
<th>Sheath Compatibility (Fr)</th>
<th>Crossing Profile (mm)</th>
<th>Working Length¹ (cm)</th>
<th>Effective Length² (cm)</th>
<th>Tip Length (cm)</th>
<th>Max. Cut Length (mm)</th>
<th>Packing Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>HawkOne LS</td>
<td>H1-LS</td>
<td>3.5 to 7.0</td>
<td>7</td>
<td>2.6</td>
<td>114</td>
<td>107</td>
<td>6.6</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Standard Tip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HawkOne LX</td>
<td>H1-LX</td>
<td>3.5 to 7.0</td>
<td>7</td>
<td>2.6</td>
<td>114</td>
<td>104</td>
<td>9.6</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Extended Tip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HawkOne M</td>
<td>H1-M</td>
<td>3.0 – 7.0</td>
<td>6</td>
<td>2.2</td>
<td>135</td>
<td>129</td>
<td>5.9</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>6F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HawkOne S</td>
<td>H1-S</td>
<td>2.0 – 4.0</td>
<td>6</td>
<td>2.2</td>
<td>151</td>
<td>145</td>
<td>5.9</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>TurboHawk SX-C</td>
<td>THS-SC-C</td>
<td>2.0 to 4.0</td>
<td>6</td>
<td>2.2</td>
<td>135</td>
<td>129</td>
<td>5.9</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Extended tip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ HawkOne™ Working Length- Distal end of pre-loaded flush tool, in the proximal position, to the distal end of tip.

² HawkOne™ Effective Length- Distal end of pre-loaded flush tool, in the proximal position, to the proximal end of cutter window.
Registry for Hawk Directional Atherectomy
(Oct 2016 - Jan 2019)

- A single arm, prospective registry of patients with infrainguinal arterial disease requiring intervention with the TurboHawk or HawkOne atherectomy devices

- All patients were protected with SpiderFX filters

- The majority of atherectomised lesions were treated with drug-coated balloons

- Tibial vessel atherectomies were treated with intra op intra-arterial nitrates post op dual antiplatelet agents

- Patients were followed up postoperatively at regular intervals with clinical review and duplex ultrasound

- Endpoints primary patency (duplex defined with PSVR > 2.4) TLR, and MAE most importantly, major amputation rates
Registry for Hawk Directional Atherectomy
(Oct 2016- Jan 2019)

- Treated over 200 patients with Hawk directional atherectomy devices
 - Multiple vessels per leg / multiple separate lesions per leg

- Preliminary data assessment of 218 legs in 170 patients

- 152 infra-popliteal vessels

- HawkOne devices were always used in conjunction with SpiderFX filters
 - Mean Age 79yo
 - 47% F 53% M
 - Over 80% of tibial cases were for CLI
 - Lesion length ranged from 2 cm to >25 cm

- Combination therapy using a DCB: 91.4% or with POBA only: 8.6%

- Tibial DCB platforms

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medtronic</td>
<td>InPact</td>
</tr>
<tr>
<td>Bard</td>
<td>Lutonix</td>
</tr>
<tr>
<td>Biotronik</td>
<td>Passeo 18 Lux</td>
</tr>
<tr>
<td>iVascular</td>
<td>Luminor</td>
</tr>
</tbody>
</table>

Lesions treated by vessel location

```
Lesion Count

- SFA: 122
- Popliteal: 85
- Tibioperone: 65
- Anterior tibial: 47
- Posterior tibial: 22
- Peroneal: 18
- CFA: 14
```
Registry for Hawk Directional Atherectomy
(Oct 2016 - Jan 2019)

TOTAL COHORT
PRIMARY PATENCY
1 year 75.2% (69.9 – 81.0)
2 years 60.9% (52.2 – 70.9)

PRIMARY ASSISTED PATENCY
1 year 85.9% (81.5 – 90.6)
2 years 76.0% (67.8 – 85.1)

SECONDARY PATENCY
1 year 89.0% (84.9 – 93.3)
2 years 82.9% (75.4 – 91.3)

Freedom from Target Lesion Revascularisation (fTLR)
1 year 83.7% (79.1 – 88.5)
2 years 68.3% (59.7 – 78.2)

373 vessels treated
495 identified lesions

Femoropopliteal
n = 221
Infrapopliteal
n = 152
Hawk Directional Atherectomy in the Tibial Arteries

- Tibial arteries treated (n=152)
 - TPT 65
 - AT 47
 - PT 22
 - PA 18

- 99% initial technical success with intention to treat
 - 1 Excessive debris in filter requiring removal with sheath
 - 1 Excessive filter wire wrap requiring exchange of device

- All patients had debris of some form, caught in the filter device

- 1 unrelated mortality

- Major adverse events (MAE - 2%)
 - 2 groin site complications requiring reintervention
 - 3 non flow limiting dissections - no bailout stenting
 - 2 distal embolization requiring thrombolysis and endo-thrombectomy
 - 2 tibial artery perforations / controlled with angioplasty and no other treatment was required
 - 3 AVF - none required treatment
 - No open conversions
Hawk Directional Atherectomy in the Tibial Arteries
(Oct 2016 - Jan 2019)

Tibial Lesions
n = 152
TPT 65
AT 47
PA 18
PT 22

Freedom from Target Lesion Revascularisation (fTLR) (Tibial Cohort)
1 year 74.1% (65.2 – 84.1)
2 years 66.2% (53.5 – 81.8)

Patency rates of directional atherectomy (tibial cohort)

PRIMARY PATENCY
1 year 60.9% (51.2 – 72.6)
2 years 57.6% (46.8 – 70.8)

PRIMARY ASSISTED PATENCY
1 year 76.8% (68.2 – 86.4)
2 years 72.9% (62.4 – 85.2)

SECONDARY PATENCY
1 year 81.7% (73.7 – 90.6)
2 years 77.2% (66.3 – 89.9)
Hawk Directional Atherectomy in the Tibial Arteries
(Oct 2016 - Jan 2019)
Interim Discussion of Hawk DA in the Tibial vessels

• Very hard to study tibial vessels using usual criteria and methods in the more proximal, larger vessels
 – The vessels are small / lesions heterogeneous / lesion length can be difficult to quantify
 – Post op assessment is not straightforward, especially duplex criteria, even when using a experienced sonographers in a dedicated vascular laboratory

• We are still analysing other factors in our study that we have recorded that may affect patency and TLR such as
 – lesion length
 – lesion proximity to ankle
 – patency of plantar arch and foot vessels
Conclusion- Hawk DA in tibial vessels

- Directional atherectomy with the HawkOne device, has a role in treating tibial vessels.

- There is a significant learning curve in the use of directional atherectomy and I would recommend progressing to this small diameter vessel bed only after becoming very proficient at using it in larger vessels.

- It can decrease the chance of dissection when applied as a preparation tool for angioplasty and may be best used in conjunction with drug coated balloons.
Hawk Directional Atherectomy in tibial vessels

- That when used in trained hands is safe and unlikely to be associated with major adverse events
- It may need to be performed, a number of times, on the same vessel, to continue perfusion to the foot and eliminate CLI
- If performed effectively and in conjunction with a robust surveillance program can lead to very low major amputation rates in CLI patients
- Further assessment in the way of detailed registries and possibly RCT’s are needed to define its ideal role
The trials and tribulations of hawking in the tibials

Dr. Vikram Puttaswamy
Vascular Surgeon
Head of Department of Vascular Surgery
Royal North Shore Hospital
Sydney, Australia