Unparalleled clinical data outcome from one AAA device and expanded treatment options with approval

Prof. Dr. med. Dittmar Böckler

Department of Vascular and Endovascular Surgery
University Hospital, Heidelberg, Germany
Agenda

- 5 years Results of ENGAGE
- CHEVAR =CE marked procedure Endurant /V12 Advanta
- Endoanchoring
Disclosures

• PI of ENGAGE
• Consultancy and Research Funding
ENGAGE Global Registry

- 1,263 Patients
- 30 Countries
- 6 Continents

Clinical Follow up
- 90% after 5 yrs.

Imaging Follow up
- >75% after 5 yrs.
Patients Consecutively Enrolled

Follow-up:
30-day, Annual Visits Through 10 Years

Extensive Monitoring On-going

100% Data Management Review

Independent Data Monitoring (100% Endpoints)

Independent Clinical Event Committee

High Quality Data
ENGAGE – Challenging Baseline Characteristics

78.2% of Outside IFU Patients Had Challenging Proximal Neck Anatomical Characteristics
ENGAGE – Freedom From All-Cause Mortality

<table>
<thead>
<tr>
<th>Time from Initial Procedure</th>
<th>No. at Risk</th>
<th>No. of Events</th>
<th>No. Censored</th>
<th>Kaplan-Meier Estimate</th>
<th>Peto Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 30 days</td>
<td>1263</td>
<td>16</td>
<td>4</td>
<td>0.987</td>
<td>0.003</td>
</tr>
<tr>
<td>1 month – 1 year</td>
<td>1243</td>
<td>79</td>
<td>14</td>
<td>0.924</td>
<td>0.008</td>
</tr>
<tr>
<td>1 – 2 year</td>
<td>1150</td>
<td>80</td>
<td>72</td>
<td>0.859</td>
<td>0.010</td>
</tr>
<tr>
<td>2 – 3 year</td>
<td>998</td>
<td>76</td>
<td>29</td>
<td>0.793</td>
<td>0.012</td>
</tr>
<tr>
<td>3 – 4 year</td>
<td>893</td>
<td>70</td>
<td>44</td>
<td>0.729</td>
<td>0.014</td>
</tr>
<tr>
<td>4 – 5 year</td>
<td>779</td>
<td>70</td>
<td>262</td>
<td>0.674</td>
<td>0.017</td>
</tr>
</tbody>
</table>

FF ACM 67.4% ± 1.96*1.7%
ENGAGE – Freedom From Aneurysm Related Mortality

- **Kaplan-Meier Estimates for Aneurysm-related Mortality**
 - **No. at Risk**: 1263, 1150, 998, 893, 779, 463
 - **No. of Events**: 16, 3, 1, 1, 3, 1
 - **No. Censored**: 4, 90, 151, 104, 111, 315
 - **Kaplan-Meier Estimate**: 0.987, 0.985, 0.984, 0.983, 0.979, 0.978
 - **Peto Standard Error**: 0.003, 0.004, 0.004, 0.004, 0.005, 0.005

- **FF ARM 97.8% ± 1.96*0.5%**
Freedom From All-Cause Mortality Comparison in EVAR 1

FF ARM > 74 %

* Meta-analysis of Individual-patient Data from EVAR-1, DREAM, OVER and Ace Trials Comparing Outcomes of Endovascular or Open Repair For Abdominal Aortic Aneurysm Over 5 years. J.T. Powell et al. Br J of Surg. 2017
ENGAGE – Freedom From Conversion to Open Surgery

FF Conversion 97.9% ± 1.96*0.6%

<table>
<thead>
<tr>
<th>Time from Initial Procedure</th>
<th>At 1 Year</th>
<th>At 2 Year</th>
<th>At 3 Year</th>
<th>At 4 Year</th>
<th>At 5 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion</td>
<td>0.6% (7/1263)</td>
<td>0.3% (3/1150)</td>
<td>0.1% (1/998)</td>
<td>0.2% (2/893)</td>
<td>0.8% (6/779)</td>
</tr>
</tbody>
</table>
ENGAGE – Type Ia Endoleak On-label vs. Off-Label

<table>
<thead>
<tr>
<th></th>
<th>On-Label Subjects</th>
<th>Off-Label Subjects</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At 5 Year</td>
<td>At 5 Year</td>
<td></td>
</tr>
<tr>
<td>N = 1038</td>
<td></td>
<td>N = 225</td>
<td></td>
</tr>
<tr>
<td>Type Ia Endoleak</td>
<td>1.2% (5 / 425)</td>
<td>3.9% (3 / 76)</td>
<td>0.106</td>
</tr>
</tbody>
</table>
ENGAGE – Freedom From Aneurysm Rupture

Kaplan-Meier Estimates for Aneurysm Rupture

<table>
<thead>
<tr>
<th>Time from Initial Procedure</th>
<th>0-30 days</th>
<th>1 day – 1 year</th>
<th>1 year – 2 year</th>
<th>2 year – 3 year</th>
<th>3 year to 4 year</th>
<th>4 year – 5 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. at Risk¹</td>
<td>1263</td>
<td>1243</td>
<td>1149</td>
<td>997</td>
<td>891</td>
<td>775</td>
</tr>
<tr>
<td>No. of Events</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>No. Censored²</td>
<td>20</td>
<td>92</td>
<td>150</td>
<td>104</td>
<td>111</td>
<td>314</td>
</tr>
<tr>
<td>Kaplan-Meier Estimate³</td>
<td>1</td>
<td>0.998</td>
<td>0.996</td>
<td>0.994</td>
<td>0.988</td>
<td>0.986</td>
</tr>
<tr>
<td>Peto Standard Error</td>
<td>0.000</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>

FF Rupture 98.6% ± 1.96*0.4%
ENGAGE – Freedom From Secondary Procedure

Kaplan-Meier Estimates for Secondary Endovascular Procedure

<table>
<thead>
<tr>
<th>Time from Initial Procedure</th>
<th>0 - 30 days</th>
<th>1 month – 1 year</th>
<th>1 year – 2 year</th>
<th>2 year – 3 year</th>
<th>3 year – 4 year</th>
<th>4 year – 5 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. at Risk(^1)</td>
<td>1257</td>
<td>1214</td>
<td>1081</td>
<td>921</td>
<td>804</td>
<td>685</td>
</tr>
<tr>
<td>No. of Events</td>
<td>25</td>
<td>51</td>
<td>21</td>
<td>22</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>No. Censored(^2)</td>
<td>18</td>
<td>82</td>
<td>139</td>
<td>95</td>
<td>100</td>
<td>258</td>
</tr>
<tr>
<td>Kaplan-Meier Estimate(^3)</td>
<td>0.98</td>
<td>0.938</td>
<td>0.919</td>
<td>0.896</td>
<td>0.874</td>
<td>0.843</td>
</tr>
<tr>
<td>Peto Standard Error</td>
<td>0.004</td>
<td>0.007</td>
<td>0.008</td>
<td>0.010</td>
<td>0.012</td>
<td>0.015</td>
</tr>
</tbody>
</table>

FF Sec. Proc. 84.3% ± 1.96*1.4%
ENGAGE shows in absolute figures an approximate 10% benefit in Freedom From Secondary Procedure than what was reported in EVAR-1.
ENGAGE – Freedom From Secondary Procedures
On-Label vs Off-Label

FF Sec. Proc. On-label 84.3%
FF Sec. Proc. Off-Label 84.1%
p-value = 0.8020
ENGAGE – AAA Diameter Change

Durability in Real-world Patients
89.4% of AAA Show a Sac Decrease/Stable

- 61.4% Decrease
- 28.0% Stable
- 10.6% Increase
Summary of results at 5 years

- **FF From Aneurysm Related Mortality**: 97.8%
- **FF from Aneurysm Rupture**: 98.6%
- **FF From Secondary Procedure**: 84.3%
- **Rate AAA Sac Diameter Stable or Decrease**: 89.4%
Discussion - implications

• The ENGAGE registry demonstrates how EVAR evolution has contributed to improved patients outcomes

• Large real world registries as ENGAGE has the potential to clarify how to customize patient follow-up, which will increase the cost-effectiveness of EVAR.

• Longer-term data will be needed to see if durability is maintained (ENGAGE follow-up will extend to 10 years)
HOSTILE PROXIMAL NECK PREDICTS CHALLENGES

4.5x

Type I endoleaks 4.5x more likely at 1-year after EVAR in hostile proximal neck anatomy (P = .010)

9x

Aneurysm-related mortality risk 9x greater in hostile neck anatomy at 1-year (P=.013)

Meta-Analysis of 7 major studies in EVAR by Antoniou et al1 compared outcomes in hostile vs. friendly neck anatomies (total patients N = 1559)

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Size</th>
<th>EndoGrafts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torsello et al, 2011</td>
<td>177</td>
<td>Endurant™</td>
</tr>
<tr>
<td>AbuRahma et al, 2010</td>
<td>238</td>
<td>AneuRx™, Excluder™, Zenith™, Talent™</td>
</tr>
<tr>
<td>Hoshina et al, 2010</td>
<td>129</td>
<td>Excluder™, Zenith™</td>
</tr>
<tr>
<td>Abbruzzese et al, 2008</td>
<td>565</td>
<td>AneuRx™, Excluder™, Zenith™</td>
</tr>
<tr>
<td>Choke et al, 2006</td>
<td>147</td>
<td>Talent™, Zenith™, Excluder™, AneuRx™</td>
</tr>
<tr>
<td>Fulton et al, 2006</td>
<td>84</td>
<td>AneuRx™</td>
</tr>
<tr>
<td>Fairman et al, 2004</td>
<td>219</td>
<td>Talent™</td>
</tr>
</tbody>
</table>

1 Antoniou GA et al. JVS. 2013;57(2):527-38
POSSIBLE SOLUTIONS

• EXTEND PROXIMALLY TO CREATE A NEW SEALING ZONE

“Chimney”

FEVAR

• CREATE AN ENDOVASCULAR SUTURE LINE
To build more proximally endovascularly, current options: chEVAR

- On-label CE Mark (Endurant + BECS)
- Upper extremity access required
- Renal manipulation
Potential advantages of ChEVAR

- Approved Indication
- May Increase Proximal Seal Zone
- Cost Effective / Device Cost
- Off the Shelf Product Availability
- Flexible Aortic Stent Graft System
- Low Profile Devices
- Urgent/emergent availability*
- Angled neck
- Challenging access vessels

* The safety and effectiveness of the Endurant™ II/IIs stent graft system has not been evaluated in patients who require emergent aneurysm treatment
PERICLES - Road Toward Standardization

Collected World Experience About the Performance of the Snorkel/Chimney Endovascular Technique in the Treatment of Complex Aortic Pathologies

The PERICLES Registry

Konstantinos P. Donas, MD,* Jason T. Lee, MD,† Mario Lachat, MD,‡ Giovanni Torsello, MD, PhD,§ and Frank J. Veith, MD;¶ on behalf of the PERICLES investigators

517 patients from 13 international centers

Non-industry funded Registry

(50.2% Endurant™ stent graft)

PERICLES study

- Max diameter: 65.9 ± 21.6 mm
- Infrarenal neck diameter: 26.4 ± 4.8 mm
- Infrarenal neck length: 4.8 ± 7.4 mm
- Neck length/seal zone changed to: 21.1 + 12.7 mm

Donas K et. al; Ann Surg. 2015 Sep;262(3):546-53
PERICLES study- MAIN OUTCOMES

517 patients from 13 international centres

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean follow up</td>
<td>17.1 months</td>
</tr>
<tr>
<td>Intra-op type Ia endoleak:</td>
<td>7.9%</td>
</tr>
<tr>
<td>Persistent intra-op type Ia endoleak</td>
<td>2.9%</td>
</tr>
<tr>
<td>Technical Success</td>
<td>97.1%</td>
</tr>
<tr>
<td>Chimney-graft patency</td>
<td>94.1%</td>
</tr>
</tbody>
</table>

- Results due to combination of devices and 3 or 4 vessel ChEVAR
- Need for standardized approach

Donas K et. al; *Ann Surg.* 2015 Sep;262(3):546-53
Pericles study - SUMMARY

• ChEVAR is a valid off-the-shelf alternative in the treatment of complex EVAR and reinforces the need for standardization of the technique

• Reproducible results for **13 European** and **US** centers and > 500 treated patients with high intraoperative success

• Low incidence of persistent or new onset of type 1a endoleaks after ChEVAR in case of a new neck length of approximately **20 mm**

• Results due to combination of devices.

• ChEVAR is a safe and effective alternative endovascular treatment for juxtarenal pathologies.

Donas K et. al; *Ann Surg.* 2015 Sep;262(3):546-53
PROTAGORAS study

The PROTAGORAS study to evaluate the performance of the Endurant stent graft for patients with pararenal pathologic processes treated by the chimney/snorkel endovascular technique.

128 patients with pararenal pathologies and the intention to treat by Endurant™ and Atrium Advanta™* V12¹ as chimney graft

- Standardized device combination and protocol
- Study endpoints include:
 - Sac diameter regression
 - Chimney graft patency
 - Chimney graft-related reinterventions

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative proximal neck diameter</td>
<td>24.9 ± 3.7 mm</td>
</tr>
<tr>
<td>Preoperative suprarenal neck angulation</td>
<td>22.8 ± 22.6°</td>
</tr>
<tr>
<td>Preoperative proximal neck length</td>
<td>4.7 ± 3.2 mm</td>
</tr>
<tr>
<td>Postoperative new neck length after use of chimney grafts</td>
<td>18.7 ± 6.3 mm</td>
</tr>
</tbody>
</table>

TV per patient | 1.5
Technical success | 100%
30 day mortality | 0.08%

The PROTAGORAS study

Primary chimney graft patency **95.7%** through 24.6 months

Freedom from Chimney graft reinterventions **93.1%** through 24.6 months

NEW ONSET TYPE IA ENDOLEAK **1.6%**

The PROTAGORAS study

90.6 % patients had reduced or stable AAA diameter

Sac regression: 64.8 → 60.1mm, p <0.001

Sac behaviour is comparable to Endurant performance in ENGAGE Registry

The PROTAGORAS study

- Standard use of the Endurant™ stent graft system for ChEVAR and Advanta™* V12™* as chimney graft in 128 patients is associated with high Technical Success, significant Aneurysm Sac Regression and low incidence of Secondary Procedures.

- Standardization of device combinations, creation of a new proximal neck length of >15 mm, and meticulous follow-up seem to be the keys to achieving durable results for patients with pararenal diseases treated by ChEVAR.

- Reproducible experience from other centers is needed to establish this total endovascular alternative therapeutic option.

TM*=MAQUET Cardiovascular, LLC; Third party brands are trademarks of their respective owners
WHY SHOULD WE REINFORCE SEALING AND FIXATION INFRARENALLY?
Establishes the strength of a sutured anastomosis

More competent proximal seal and fixation by increasing apposition between the aorta and the endograft
Clinical History of Endoanchors

- First Human Implant: 2005 (Drs Deaton, Ohki, Condado)
- STAPLE – 1: 2006-2007, 21 pts
- STAPLE – 2: 2007-2009, 155 patients (5yr IDE f/u with 0% type Ia)
- ANCHOR Registry – start 2012, EU/US, >830 pts to date, 5yr f/u planned
- Total world experience >10,000 cases / >50,000 EndoAnchors implanted
A more competent proximal seal enhances AAA remodeling

In a propensity-matched study design, significantly greater AAA regression at 2 years post-EVAR

Methodology
- Pre-EVAR CTs by core lab
- 2 cohorts:
 - 99pts EVAR
 - 99pts EVAR+EndoAnchor
- Propensity matching on 19 variables

P-value = 0.01

Promotes increased rate of AAA sac regression
Clinical Evaluation
ANCHOR Registry Short Neck Cohort

- Anchor Registry Patients
 - Primary
 - Revision

- Endurant Stent Graft
- Other Devices

Baseline Anatomical Characteristics per Core Lab
- **Infrarenal Diameter:** 25.7 mm
- **Infrarenal Angulation:** 20.6°
- **Neck Length:** 6.86 mm
- **Aneurysm Diameter:** 57.7 mm
- **Avg Neck Calcium Thickness:** 1.31 mm
- **Avg Neck Thrombus Thickness:** 0.85 mm

70 Endurant Patients with Short Necks (<10 mm down to 4 mm)
Endurant + Heli-FX Short Neck Cohort (N=70)

<10mm down to 4mm length*
19 – 32mm diameters
≤ 60° infrarenal angulation
Femoral-only approach
No renal instrumentation
Off-the-shelf
18 – 20 Fr OD

* Core Lab defined neck length: length over which neck diameter remains within 10% of infrarenal diameter
Endurant + Heli-FX Short Neck Cohort (N=70)

Initial Implant Procedure

<table>
<thead>
<tr>
<th></th>
<th>148</th>
<th>17</th>
<th>35</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. duration of Procedure (min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. time to EndoAnchor implant (min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. Fluoro Time (min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. number of EndoAnchor implants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Technical Success: 88.6% (62/70)
- Procedural Success: 97.1% (68/70)

<table>
<thead>
<tr>
<th></th>
<th>1 month</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1a Endoleak</td>
<td>6.8% (4/59)</td>
<td>1.9% (1/53)</td>
</tr>
<tr>
<td>Endograft Migration</td>
<td>N/A</td>
<td>0.0% (0/41)</td>
</tr>
<tr>
<td>2nd Endo Procedure</td>
<td>2.9% (2/70)</td>
<td>4.7% (3/64)*</td>
</tr>
</tbody>
</table>

Sac behavior at 12 months

- Increase 0.0%
- Stable 57.4%
- Decrease 42.6%

* 1.6% (N=1) 2nd Procedure to treat proximal neck
Endurant + Heli-FX Short Neck Cohort (N=70)

<table>
<thead>
<tr>
<th>Kaplan-Meier Estimates</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freedom from ACM</td>
<td>92.7%</td>
</tr>
<tr>
<td>Freedom from ARM</td>
<td>94.3%</td>
</tr>
<tr>
<td>Freedom from 2nd Procedures</td>
<td>95.4%</td>
</tr>
<tr>
<td>Freedom from rupture</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adverse Events through 12 months</th>
<th>Patients with Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>EndoAnchor Implant-Related SAE</td>
<td>0/70</td>
</tr>
<tr>
<td>Aneurysm Rupture</td>
<td>0/64</td>
</tr>
<tr>
<td>AAA-Related Mortality</td>
<td>4/68</td>
</tr>
<tr>
<td>Open Surgical Conversion</td>
<td>0/64</td>
</tr>
</tbody>
</table>

Very good early clinical outcomes in a challenging patient population
Arguments Pro: Endurant + Heli-FX in Short Necks

<table>
<thead>
<tr>
<th>Device Availability</th>
<th>Access</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-the-shelf</td>
<td>Endurant 18/20 Fr OD</td>
<td>No upper extremity access required</td>
</tr>
<tr>
<td>Available for symptomatic or rupture cases</td>
<td>Heli-FX 16 Fr OD</td>
<td>Less time under general anesthesia for highly comorbid patients</td>
</tr>
<tr>
<td></td>
<td>FEVAR 23.4 Fr OD</td>
<td></td>
</tr>
</tbody>
</table>
Arguments Pro: Endurant + Heli-FX in Short Necks

Contrast and Radiation
- Low fluoro times means less radiation exposure
- Low contrast use equals less renal insult

Economics
- No renovisceral stents leads to less devices used
- Shorter procedure times
- Fewer reinterventions equates to lower overall patient costs

Encouraging 1-Year Outcomes
- 1.9% type Ia (N=1)
- No conversions or ruptures
- 1.6% proximal-neck 2nd procedures
Conclusions

• Standard EVAR = safe and effective solution to treat standard anatomy

• In complex anatomies we need to tailor the right endovascular solution among the existing complementary options, considering multiple factors (anatomy, comorbidities, cost, etc.)

• CHEVAR and Endoanchoring seems to be safe and effective
Unparalleled clinical data outcome from one AAA device and expanded treatment options with approval

Prof. Dr. med. Dittmar Böckler

Department of Vascular and Endovascular Surgery
University hospital, Heidelberg, Germany